Виды гребных винтов судна. Огромные винты больших кораблей. Типы гребных винтов

25.04.2024

С учетом особенностей производства и эксплуатации греб­ных винтов материалы для их изготовления должны обладать следующими общими свойствами:

высокими механическими качествами, т. с. прочностью и пластичностью, обеспечивающими возможность противостоять усталостным нагрузкам, воспринимаемым лопастями;

повышенной коррозионной и эрозионной стойкостью и спо­собностью сохранять первоначальную чистоту поверхности про­должительное время;

высокими технологическими качествами, т. е. хорошими ли­тейными свойствами и легкостью обработки режущим инстру­ментом;

ремонтопригодностью - способностью легко подвергаться правке, заварке, наплавке и т. д.

Материалами для изготовления гребных винтов служат цветные сплавы и нержавеющие стали. Учитывая дефицитность цветных сплавов и высокую стоимость нержавеющей стали, вопреки требованиям эксплуатации, гребные винты изготовляют пока и из углеродистой стали. В качестве опытных материалов применяют пластмассы и титан.

Углеродистая сталь марок 25Л, ЗОЛ и 35Л обладает крайне низкими коррозионными свойствами. Винты, изготовленные из нее, выходят из строя вследствие коррозионного износа через 6-18 мес. Применение этого материала целесообразно лишь на судах, эксплуатирующихся в тяжелых ледовых условиях или подлежащих списанию в ближайшие годы. В целях повы­шения коррозионной стойкости и усталостной прочности греб­ных винтов из углеродистой стали в настоящее время осуще­ствляется внедрение электролитических покрытий из специаль­ных сплавов, наносимых на лопасти по методу инж. М. И. Дворкина.

В соответствии с классификацией Международной ассоциа­ции классификационных обществ (МАКО) цветные сплавы для изготовления гребных винтов разделяют на четыре категории с различным нижним уровнем механических свойств (табл. 3.3).

Из латуней в отечественной практике наиболее распростра­нена марганцовисто-железистая латунь марки ЛМцЖ55-3-1, химический состав и механические свойства которой приведены и табл. 3.5. Эта латунь обладает хорошими литейными, но низ­кими коррозионно-усталостными свойствами; ее условный пре­дел коррозионной выносливости в морской воде a σ -1 =(8.5-10) кгс/мм 2 = 80- 100 на базе 10 6 . Наиболее серьезными недостатками этой латуни являются следующие:

обесцинкование, т. е. выделение цинка из сплава при отсут­ствии протекторной защиты. Следствием обесцинкования явля­ются трещины и разрушения поверхности лопасти;

склонность к коррозионному растрескиванию, т. е. к разру­шению, вызванному перенапряжением материала при совмест­ном действии внутренних растягивающих напряжений и корро­зионной среды (морской воды).

Внутренние растягивающие напряжения возникают в ре­зультате нагрева и последующего охлаждения металла при сварке или правке. Они достигают значительной величины и могут быть ориентировочно оценены по формуле

где / - температура нагрева.

В лопастях из материалов, склонных к коррозионному рас­трескиванию, возникают трещины через 10 недель и более после нагрева, даже без приложения рабочих нагрузок. Склон­ность к коррозионному растрескиванию приводит к разруше­нию лопастей, если своевременно не снять внутренние напря­жения термической обработкой.

Недостаточный учет при проектировании и изготовлении гребных винтов низких коррозионно-усталостных свойств ла­туни ЛМцЖ55-3-1 и ее склонности к коррозионному растрески­ванию послужил причиной большого числа аварий гребных винтов на отечественных судах (рис. 3.51). Латунь ЛМцЖ55-3-1 при условии учета этих факторов целесообразно применять для изготовления гребных винтов средних размеров.

Взамен недостаточно коррозионно-стойкой углеродистой стали разработана и широко применяется отечественная не­ржавеющая сталь марки 1Х14НДЛ (табл. 3.4). Этот сплав обладает сравнительно высокими коррозионно-усталостными свойствами {предел коррозионной выносливости 0_i~ - 15 кгс/мм 2 на базе 10 6 циклов} при условии хо­рошей обработки поверхности лопастей. Учитывая технологи­ческие трудности при выполнении такой обработки, поверх­ность лопастей из этого сплава обычно только зачищают абра­зивами. Очень чувствительная к надрезам нержавеющая сталь 1Х14НДЛ в изделии фактически обладает o_i = 7,5-f-8 кгс/мм 2 на базе 10 6 . Это ее свойство также явилось при­чиной разрушений лопастей гребных винтов вследствие израс­ходования ресурса циклической прочности на ряде отечествен­ных судов («Ленинский комсомол», «Мелитополь» и др.).

Наиболее перспективными и качественными материалами для изготовления гребных винтов являются специальные сплавы, в том числе никель-алюминиевые, и в еще большей степени марганцовисто-алюминиевые бронзы. Промышленностью освоено производство гребных винтов из следующих отечественных сплавов:

никель-алюминиевая бронза БрАЖН9-4-4;

марганцовисто-алюминиевые бронзы «Нева-60» и «Нева-70». Состав и физические свойства этих сплавов приведены в табл. 3.5.

Эти сплавы обладают значительно более высокой, по срав­нению с латунью, стойкостью против коррозионных и эрозион­ных разрушений и существенно большей коррозионно-усталост-ной выносливостью.

Никель-алюминиевые бронзы не склонны к коррозионному растрескиванию, т. е. после нагрева не требуют термообра­ботки; однако они становятся хрупкими при нагреве от 200 до 500°. Если лопасть гребного винта из такой бронзы нагреть в пределах этого диапазона температур, то она теряет свои пластические свойства (рис.3.52) и при приложении на­грузки (например, при правке) может сломаться. По­сле увеличения температуры нагрева до 700° С и выше пла­стические свойства этого ма­териала повышаются.

Марганцовисто-алюминие-вые бронзы не склонны к ох-рупчиванию при нагреве (см. рис. 3.52), но значительно в меньшей степени, чем ла­туни, они подвержены корро­зионному растрескиванию.

Высокие требования, предъ­являемые к материалам и к точности изготовления греб­ных винтов, явились причиной

покупки лицензии на материалы и технологию изготовления гребных винтов английской специализированной фирмы «Стоун».

Лицензионные сплавы аналогичны по свойствам соответст­вующим отечественным материалам. Они носят названия: ни­кель-алюминиевая бронза - «Никалиум»; марганцовисто-алюмипиевые бронзы - «Новостон» и «Суперстон-70».

На отечественных морских судах зарубежной постройки установлены гребные винты, изготовленные на специализиро­ванных заводах фирм ЛИПС (Голландия), «Теодор Цайзе» (ФРГ), «Стоун» (Англия), «Ансальдо» (Италия), «Мицубиси» (Япония), «Сосьсте Нантез де Фонтье» (Франция) и др.

Наиболее распространенные сплавы, применяемые этими фирмами, имеют следующие названия или обозначения:

никель-алюминиевые бронзы «Куниал» (фирма ЛИПС), «Алькуник» (фирма «Теодор Цайзе»), «Мицуби» (компания «Мицубиси»), «Ниальма» («Ансальдо»), «Нантиал» («Сосьсте Нантез де Фонтье»);

марганцовисто-алюминиевые бронзы «Линдрунел» (ЛИПС); AI-MnBzl3 («Теодор Цайзе»); «Мангал-99» («Сосьете Нан­тез») .

Изготовленные из зарубежных нержавеющих сталей греб ные винты установлены в основном только на судах, построен ных в Финляндии. Эти винты из стали «Кархула 15С130» обладающей более низкими, чем стали 1Х14НДЛ, коррозионно усталостными свойствами, и из еще менее качественной мало углеродистой легированной стали, содержащей 3% Ni.

Судовые гребные винты изготавливают из антикоррозионных материалов, поскольку они работают в морской воде, являющейся катализатором коррозии. Материалами, используемыми для изготовления гребных винтов, являются алюминиевые сплавы и нержавеющая сталь. Другие используемые материалы - это сплавы никеля, бронзы и алюминия, которые на 10-15% легче других материалов и имеют более высокую прочность.

Процесс изготовления гребных винтов включает крепление определенного числа лопастей на ступице с помощью сварки, или же винт изготавливается из единой поковки. Кованые лопасти более надежны и обладают большей прочностью, но являются более дорогостоящими, по сравнению со сварными лопастями. При вращении в водной среде, за счет разности давлений на кромках лопастей, гребной винт создает упор, движущий судно.

Такой вид движителей, как гребные винты, постоянно развивается и усовершенствуется. Но сначала рассмотрим классификацию традиционных гребных винтов. Классификацию гребных винтов можно представить в следующем виде.

Типы гребных винтов

Гребные винты классифицируются по ряду факторов.

А) Классификация по количеству лопастей:

Количество лопастей гребного винта может варьироваться от трех до четырех и иногда даже до пяти. Однако наиболее частым случаем является наличие у винта трех или четырех лопастей.

Теоретически, наивысшей эффективностью обладал бы винт с двумя лопастями. Но из соображений прочности и необходимости выдерживать высокие нагрузки на судах не используются двухлопастные гребные винты.

Трехлопастной гребной винт

Стоимость изготовления ниже, чем у других типов гребных винтов

Обычно изготавливаются из алюминиевого сплава

Обеспечивают высокую скорость хода судна

Ускорение более высокое, чем у других типов винтов

Э ффективность на малых скоростях хода низкая

Четырехлопастной гребной винт

Стоимость изготовления выше, чем у трехлопастных винтов

И зготавливаются из сплавов нержавеющей стали

И меют более высокую прочность и выносливость

Хорошо работают и при малых скоростях хода

Обеспечивают большую экономию топлива, чем винты других типов

Пятилопастной гребной винт

Стоимость изготовления самая высокая из всех типов гребных винтов

Уровень вибраций самый минимальный из всех типов гребных винтов

Шестилопастной гребной винт

Стоимость изготовления высокая

У шестилопастных винтов область индуцированного давления над винтом меньше

У крупных контейнеровозов, как правило, пяти- и шестилопастные гребные винты

B) Классификация по шагу винта:

Шаг гребного винта можно определить как перемещение, вызванное каждым круговым поворотом винта на 360 градусов.

Винт фиксированного шага (ВФШ)

Лопасти ВФШ стационарно закреплены на ступице. Гребные винты фиксированного шага литые, и позиция лопастей, а значит и шаг винта постоянны и не могут быть изменены в процессе эксплуатации винта. Такие винты обычно изготавливают из медных сплавов.

ВФШ прочны и надежны, поскольку не содержат механических деталей и гидравлики, в отличие от винтов регулируемого шага (ВРШ). Стоимость изготовления, монтажа и эксплуатации значительно ниже, чем у ВРШ. Однако маневренность судна с ВФШ ниже, чем у судна с ВРШ. Винты данного типа устанавливают на судах, не требующих высокой маневренности.


Винт регулируемого шага (ВРШ)

У ВРШ возможно менять шаг гребного винта за счет поворота лопасти вокруг вертикальной оси с использованием механических компонентов и гидравлики. Это позволяет избавиться от оборудования, необходимого для реверса. Повышается маневренность судна и эффективность работы двигателя.

Недостатком является возможность протечек гидравлики и загрязнения водной среды маслом. Кроме того, такой гребной винт сложен в изготовлении и монтаже на судне, а также требует особого внимания при эксплуатации судна.

Эффективность ВРШ несколько ниже, чем у ВФШ тех же размеров из-за большей ступицы, в которой нужно размещать механизм поворота лопастей и гидравлику. А гребные винты, как правило, более эффективны с увеличением их диаметра.

Для повышения эффективности работы гребные винты снабжают специальными насадками. Такие винты включают помимо самого винта кольцевую насадку, внутри которой размещается гребной винт. Винты с насадками успешно используются при необходимости создания дополнительного упора на малых скоростях хода. Обычно винты этого типа используются на буксирах-якорезаводчиках, на рыболовных траулерах, где за счет насадок обеспечивается от 40 до 50% упора винта при малых и близких к нулю скоростях хода. Иногда насадки делают поворотными. Но все это устройства, повышающие эффективность работы традиционных гребных винтов.

Усовершенствования в конструкциях винто-рулевого комплекса

Эффективность работы винто-рулевого комплекса может повышаться за счет добавления деталей как перед винтом, так и позади гребного винта. Добавление таких деталей в виде плавников или ребер является одним из способов снижения потерь мощности и экономии топлива. Большинство подобных устройств проходят предварительные испытания на моделях с тщательным замером всех характеристик и параметров перед установкой их на гребные винты коммерческих судов. Потери мощности винта, как правило, связаны с образованием спутных вихрей, устранить которые, и пытаются с помощью добавления таких деталей. Целью подобных инноваций является создание наиболее благоприятных условий для работы гребного винта. Насадки, плавники, сопла, бульбы и другие устройства используются для снижения требуемой мощности и повышения скорости судна.


Кольцевые насадки являются наиболее старым видом устройств, повышающих эффективность работы гребного винта. Такие насадки были изобретены немецким инженером Людвигом Кортом в 1930-е гг. и называются насадками Корта или кольцевыми насадками. В наши дни подобные насадки также продолжают использоваться на судах, где при малых скоростях хода требуется повышенный упор гребного винта.

Насадка Мьюиса (Mewis Duct) и полупреднасадка проф. Шнееклюта (Wake Equalizing Duct - WED)

Насадка Мьюиса и полупреднасадка проф. Шнееклюта являются двумя примерами устройств, устанавливаемых перед гребным винтом, использование которых основано на опыте, полученном при исследованиях и эксплуатации насадок Корта. Эти устройства используются на крупных коммерческих судах. Со времени ввода на рынок в 2010 г. насадка Мьюиса привлекла внимание как судовладельцев, так и судостроителей. Насадкой на настоящий момент оснащены 62 судна, и еще для 250 судов заказана установка данного устройства. Устройство используется на танкерах, балкерах и фидерных контейнеровозах.

Полупреднасадка проф. Шнееклюта была изобретена в 1980-х гг. С тех пор устройство применялось на 1500 судах океанского плавания. Это устройство идеально подходит для судов с полными обводами, таких как танкеры и контейнеровозы, эксплуатируемые при средней скорости хода 19 узлов. Проф. Шнееклют анонсировал экономию топлива в размере 12%, но на практике результаты были более скромными, хотя и значительными. Годовая экономия топлива в размере всего 3,5% на деле для контейнеровоза грузовместимостью 2500 ДФЭ означает ежегодную экономию 550 т топлива, а это представляет весьма существенную экономию для транспортной компании.

Инновации в конструкции винто-рулевого комплекса

Статор с лопатками на ступице гребного винта


Для повышения эффективности насадки могут монтироваться впереди гребного винта. Корпорация DSME разработала статор с лопатками на ступице гребного винта, который является альтернативой установке кольцевых насадок и тоннелей.

Разработка устройства, представляющего из себя ряд лопаток статор,а закрепленных в кормовой части корпуса перед гребным винтом, велась в течение десяти лет, и его установка создает дополнительное сопротивление движению судна. Однако создаваемый лопастями несимметричный поток создает более благоприятные условия для вращения винта и, таким образом, повышает его эффективность.

Так же, как и в случае насадок, данное устройство наиболее эффективно при установке на крупных судах, таких как танкеры и контейнеровозы. Установка первого устройства на крупнотоннажный танкер 3 класса дедвейтом 320000 т, принадлежавший компании Kristen Tankers, позднее переименованной в Maran, показала снижение потребления топлива на 4% и небольшое увеличение скорости. Крупная европейская судоходная компания заказала установку этих систем на 10 принадлежащих ей судов класса "Post-panamax" и сообщила об уменьшении потребления топлива и сокращении выбросов в результате этого.

Настолько же эффективны и доступны в установке и эксплуатации, устройства размещаемые за гребным винтом. Два из этих устройств - крыльчатая наделка с прямыми лопастями на ступице гребного винта (Propeller Boss Cap Fin - PBCF) и крыльчатая наделка с изогнутыми лопастями на ступице гребного винта (Propeller Cap Turbine - PCT) могут заменять обычный обтекатель гребного винта. Оба устройства используют вихревые потоки, образующиеся при вращении винта, для повышения его эффективности.

Рис.7. Внешний вид крыльчатой наделки с прямыми лопастями на ступице гребного винта (Boss Cap Fins).

Крыльчатая наделка с прямыми лопастями на ступице гребного винта представляет собой закрепленные на обтекателе винта прямые лопасти, а в крыльчатой наделке с изогнутыми лопастями на обтекателе устанавливаются искривленные лопасти.

Впервые устройство PBCF было изготовлено в конце 80-х гг. и с тех пор было установлено более 2000 устройств, которые, по заявлениям экспертов, обеспечивают экономию в 3-5%. Однако на малых скоростях эффективность данных устройств снижается.

Так же как и системы, размещаемые перед гребным винтом, PBCF и PCT являются относительно недорогими и несложными системами, которые могут монтироваться в дополнение к уже установленной пропульсивной системе. А, по утверждениям экспертов, окупаемость инвестиций в PBCF составляет один год, при том, что установка устройства на винт может быть произведена в течение двух дней без захода судна в сухой док.

Таким образом, за счет установки этих простых легко монтируемых устройств может достигаться экономия топлива. А поскольку стоимость топлива растет, то эти системы обеспечивают быструю окупаемость, заняв за счет этого свою долю рынка.

Системы, размещаемые в дополнение к гребным винтам, старых и новых типов позволяют уменьшить расходы судовладельцев и судовых операторов без необходимости сдавать на слом старые суда и инвестировать в новые экологичные проекты.

Устройства, предназначенные для создания упорного давления, воспринимаемого судном и являющегося основой его движения, называются движителями. Существуют движители различных видов: лопастные колеса, крыльчатые движители, гребные винты и т. д.

Крыльчатый движитель представляет собой диск, снабженный тремя-четырьмя вертикальными поворотными лопастями и расположенный горизонтально под кормой судна на вертикальном валу. Диск приводится во вращение от электродвигателя через коническую зубчатую передачу. Использование крыльчатых движителей обеспечивает высокую маневренность судна при отсутствии рулевого устройства и позволяет осуществлять задний ход без реверса двигателя. Однако конструктивная сложность таких движителей и их габариты, возрастающие с увеличением мощности энергетической установки судна, не позволяют применять их для крупных
судов. В последнее время крыльчатыми движителями типа «Фойтшнейдер» снабжают самоходные грузовые краны, некоторые мелкие суда и подруливающие устройства более крупных судов.

Наибольшее распространение в качестве движителя для судов получил гребной винт. Основными частями гребного винта (рис. 81) являются: ступица 1 винта с конусным отверстием внутри и лопасти 2, число которых может быть от двух до шести. Гребные винты выполняют с цельнолитыми, со съемными и с поворотными лопастями.

Рис. 81. Гребной винт с цельнолитыми лопастями.

Винты с цельнолитыми лопастями (рис. 81) применяют в основном на судах морского торгового флота. Такие винты отличаются небольшими весом и габаритом ступицы, а также более высокой прочностью в нормальных условиях эксплуатации.

Винты со съемными лопастями устанавливают на судах арктического флота, где по условиям эксплуатации замена поврежденной лопасти целой более удобна, чем замена всего винта. Кроме того, такие винты применяют в том случае, когда диаметр винта велик и отливка его затруднительна.

Винты с поворотными лопастями, иначе называемые винтами регулируемого шага (ВРШ), отличаются от обычных тем, что их лопасти закрепляются подвижно в ступице винта и могут поворачиваться вокруг своей оси на заданный угол при помощи особого привода. Этот привод, или механизм изменения шага (МИШ), обычно располагается внутри ступицы винта, поэтому ступица значительно больше, чем у обычных винтов. Механизм изменения шага бывает ручным, механическим, электромеханическим, гидравлическим и электрогидравлическим. В состав МИШ, за исключением ручного, входят: механизм поворота лопастей, размещаемый, как правило, в ступице винта; сервомотор, создающий усилия для поворота лопастей и располагаемый на участке между гребным валом и главным двигателем; обратная связь или устройство, показывающее величину нового шага винта.

Механизм поворота лопастей (рис. 82) бывает двух видов: зубчатый и кривошипный, причем последний более надежен и применяется во всех напряженных конструкциях винтов (больших мощностей и диаметров, высокооборотных ВРШ малых диаметров и др.).


Рис. 82. Механизм поворота лопастей: а - зубчатый; б - кривошипный.

Наиболее распространенным в настоящее время является гидравлический МИШ (рис. 83), обычно располагаемый в линии валопровода. Для поворота лопастей винта здесь используется энергия жидкости (чаще всего масла с малой вязкостью) под давлением. Гидравлический привод МИШ отличается относительной простотой устройства и возможностью создавать значительные рабочие усилия при сравнительно небольших габаритах и весе установки.


Рис. 83. Конструкция МИШ с гидравлическим приводом.

В ступице 4 винта находится поводок 1 штанги 5, помещенной внутри пустотелого гребного вала 6. Поводком 1, в пазу которого расположен палец 2 на комле лопасти, производится поворот последней вокруг своей оси. Для облегчения поворота комель лопасти посажен в гнездо ступицы на двухрядных конических роликоподшипниках 3. На другом конце штанги 5 располагается поршень сервомотора 7, соединенный обратной связью 8 с подвижной муфтой 12 и поршнем распределительного золотника 11. Масло в распределительный золотник 11 и сервомотор 7 подается через трубки 10 от масляного насоса. Управление изменением шага лопастей винта осуществляется рычагом 9, нижний конец которого скользит в пазу подвижной муфты. Гидравлический МИШ позволяет производить управление шагом винта с ходового мостика при помощи дистанционной пневматической системы.

Применение винтов регулируемого шага позволило значительно упростить управление судном, уменьшить габариты и вес главных двигателей за счет устранения ступеней и устройства заднего хода, давать судну обратный ход без перемены направления вращения гребного вала. Кроме того, применение ВРШ на таких судах, как буксиры, танкеры и лесовозы, позволяет привести шаг винта в соответствие с любой скоростью. Это повышает экономичность работы энергетической установки и дает возможность более полно использовать мощность главных двигателей на различных режимах работы.

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями

1 - муфте; 2 - редуктор; 3 - валопровод; 4 - гребной винт

Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта - через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных - он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.


Судовые муфты

а, b - жесткие (глухие) муфты: 1 - полумуфта; 2 - фланец; 3 - шпоночная канавка со шпонкой. с - схема гидромуфты: 1, 2 - насосы; 3 - цистерна. d - схема гидромуфты (турбо-муфты); е - гибкая муфта. 4 - фланец; 5 - элемент муфты. f - электромагнитная муфта.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна - аналогично гидродинамической и электромагнитной муфте - вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.


Механический судовой редуктор

а - суммирующий; b - планетарный. 1 - вал турбины высокого давления; 2 - вал турбины низкого давления; 3, 5, 8, 9 - центральные солнечные шестерни; 4 - водило; 6 - свободный эпицикл; 7 - вал; 10 - тормозной эпицикл; 11 - свободное водило; 12 - полый вал; 13 - зубчатые колеса (3-я ступень); 14 - приводное зубчатое колесо гребного вала; 15 - гребной вал; 16 - гребной винт

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем - другая.



Валопровод

а - общий вид; b - полумуфта; с - упорный подшипник; d, e - принцип действия упорного подшипника. 1 - гребной вал; 2 - сальник; 3 - полу- подшипник; 6 - переборочный сальник; 7 - муфта; 4 - промежуточный вал; 5 - опорный упорный подшипник; 8 - упорный вал

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.


Судовой движитель

а - гребной винт с неподвижными лопастями; b - винт регулируемого шага; с - гребной винт в насадке; d - соосные гребные винты

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу. Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса - 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт - от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи. Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.



Крыльчатый движитель

а - принцип действия; b - движитель Фойта-Шнейдера (вид сбоку); с - движитель Фойта Шнейдера (вид сверху); d - буксир с движителем Фойта-Шнейдера в носовой части судна; е - буксир с движителем Фойта-Шнейдера в кормовой части судна

I - «Стоп»; 2 - «Передний ход»; 3 - «Задний ход»; 4 - «Поворот на левый борт»; 5 - «Поворот на левый борт» (на заднем ходу); 6 - «Поворот на правый борт»; 7 - управляющий механизм; 8 - привод; 9 - лопасти; 10 - распределительные рычаги и тяги

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.

Чтобы заставить лодку, как и любое судно, двигаться с постоянной скоростью, надо приложить к ней постоянно действующее усилие (тягу), которое было бы достаточным для преодоления сопротивления воды.

На малых судах для создания тяги наибольшее распространение получил гребной винт - легкий, компактный, высокоэффективный, простой в изготовлении и удобный в эксплуатации движитель. Поговорим о нем поподробнее, разберемся в принципе работы и устройстве гребного винта.

Гребной винт (рис. 1) состоит из втулки - ступицы и нескольких лопастей , отлитых заодно с нею или изготовленных отдельно и закрепленных на ней. Винт обычно располагается в корме судна и приводится во вращение двигателем через гребной вал. Своим названием он обязан тому, что при работе любая точка его лопасти движется по винтовой линии - вращается и одновременно перемещается вперед вместе с судном. В основу теории, объясняющей работу гребного винта, положен принцип гидродинамического крыла . На первый взгляд это кажется странным - причем здесь крыло?, - но не торопитесь с выводом.

Посмотрим на лопасть винта сбоку (рис. 2) и представим направление, в котором она движется в воде (или, применив принцип обратимости движения, направление потока, обтекающего лопасть).

Скорость W потока воды относительно лопасти можно получить геометрическим сложением двух векторов: вызываемой вращением винта окружной скорости V r =2πrn (π=3,14; r - отстояние рассматриваемого сечения лопасти от оси винта; n - число оборотов винта в секунду) и поступательной скорости движения вместе с судном V а. Вектор суммарной скорости W направлен к нижней поверхности лопасти под углом α, называемым в теории крыла углом атаки . При этом на нижней поверхности лопасти (ее называют нагнетающей) создается повышенное давление воды, а на верхней (засасывающей) - разрежение. В результате разности давлений на лопасти, как на крыле, возникает подъемная сила Y. Если разложить ее на составляющие, одна из которых направлена в сторону движения судна, а вторая перпендикулярна ему, то получим соответственно силу Р, создающую упор гребного винта, и силу T, создающую крутящий момент, который и приходится преодолевать двигателю для того, чтобы винт вращался и двигал судно.

Упор гребного винта, создаваемый подъемной силой, зависит не столько от площади лопасти, сколько - в полной аналогии с крылом - от таких ее параметров, как угол атаки, профиль сечения, длина лопасти.

Познакомимся же с этими и другими основными характеристиками гребного винта.

Диаметр винта D определяется по окружности, описываемой наиболее удаленной от оси винта точкой лопасти.

Геометрический шаг гребного винта H - это шаг винтовой поверхности, с которой совпадает нагнетающая сторона лопасти. Если бы винт ввинчивался в воду, как в гайку, то за один его оборот судно прошло бы расстояние, равное шагу винта, а его скорость была бы равна Hn.

Почему лопасть должна иметь винтовую поверхность? Посмотрим на рис. 2. Очевидно, винт даст наибольший упор, если сечения лопасти на любом радиусе r будут расположены под одним и тем же оптимальным углом атаки к набегающему потоку α. Однако вблизи ступицы окружная скорость V r =2πrn будет меньше, чем у конца лопасти, в то время как осевая скорость винта Hn везде одинакова. В результате изменится величина и направление скорости W. Чтобы сохранить угол α неизменным, лопасть у ступицы следует развернуть под большим углом к V r , чем у конца. Это хорошо видно также и из другого рисунка (рис. 3), где показан способ образования и проверки винтовой поверхности лопасти с помощью шаговых угольников.

Диаметр и шаг винта являются важнейшими параметрами, от которых зависит возможность наиболее полного использования мощности двигателя, и, следовательно, достижения наибольшей скорости хода судна.

Если шаг винта слишком велик для данных скорости и числа оборотов, лопасти будут захватывать и отбрасывать назад слишком большое количество воды, упор винта возрастет, но зато одновременно увеличится крутящий момент на гребном валу и двигателю не хватит мощности, чтобы развить полные обороты. В этом случае говорят, что винт тяжелый .

Наоборот, если шаг мал, двигатель легко будет вращать винт на полном числе оборотов, но упор будет невелик, и судно не достигнет максимально возможной скорости. Такой винт считается легким .

Шаг и диаметр рассчитывают с учетом сопротивления воды движению корпуса, заданной скорости хода судна, числа оборотов и мощности устанавливаемого двигателя. Общее правило таково: для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых и тихоходных - с меньшим. При обычно применяющихся двигателях с числом оборотов 1500-5000 об/мин оптимальное шаговое отношение H/D будет составлять: на гоночных мотолодках и глиссерах 0,9-1,4; легких прогулочных катерах 0,8-1,2; водоизмещающих катерах 0,6-1,0 и очень тяжелых тихоходных катерах 0,55-0,80. Важно иметь в виду, что эти значения справедливы, если гребной вал делает примерно 1000 об мин на каждые 15 км/час скорости лодки. В противных случаях необходимо применять редуктор, соответственно изменяющий число оборотов гребного винта.

Диаметр винта существенно влияет на загрузку двигателя. Например, при увеличении D всего на 5% приходится повышать мощность двигателя почти на 30%, чтобы получить то же число n оборотов винта. Это следует учитывать, если требуется «облегчить» тяжелый винт: иногда бывает достаточно немного подрезать концы лопастей до меньшего диаметра.

За один оборот винт вместе с судном продвигается вперед (рис. 4) не на величину шага Н, а из-за скольжения в воде - на меньшее расстояние, называемое поступью h p . Потеря скорости при этом составит Hn=h p n. Величина скольжения характеризуется отношением:


Скольжение s выражается обычно в процентах.

Поступь и скольжение гребного винта легко определить, зная скорость лодки, шаг винта и число его оборотов, так как:


Важно подчеркнуть, что скольжение является непременным условием работы гребного винта, поскольку именно благодаря скольжению поток воды натекает на лопасть под углом атаки и на ней создается подъемная сила - упор. Если бы скольжение было равно нулю, поступь равнялась бы шагу винта и упора практически не было бы .

Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15%) имеют винты легких гоночных мотолодок и скутеров; у винтов глиссирующих катеров скольжение составляет 15-25%, у тяжелых водоизмещающих катеров 20-40%, а у парусных яхт, имеющих вспомогательный двигатель, 50-70%. Чрезмерное скольжение свидетельствует о том, что винт слишком тяжел или судно перегружено, так как с увеличением нагрузки (например, при буксировке мотолодкой воднолыжника) скольжение возрастает.

Для катерных винтов применяются сегментные, авиационные плоско-выпуклые и выпукло-вогнутые профили сечения лопастей. Последние два типа более эффективны, но сложнее в изготовлении и дают меньший упор при реверсировании, т. е. на заднем ходу.

Площадь лопастей , как уже отмечалось, не оказывает существенного влияния на упор винта. Однако чрезмерная площадь приводит к увеличению трения винта о воду и излишним затратам мощности двигателя.

На быстроходных катерах часто приходится сталкиваться с явлением кавитации гребного винта. Известно, что при пониженном давлении (например, высоко в горах) вода закипает при температуре ниже 100° С. У высокооборотных винтов разрежение на засасывающей стороне лопасти достигает такой большой величины, что вода вскипает уже при естественной температуре. Образуются пузырьки и полости, заполненные паром, - это явление и называется кавитацией . Различают две стадии кавитации (рис. 5). На первой стадии полости невелики и на работе винта они практически не сказываются. Однако когда пузырьки лопаются, создаются огромные местные давления, в результате чего материал лопасти выкрашивается у поверхности. Такие эрозионные разрушения при длительной работе кавитирующего винта могут быть весьма значительными.

При дальнейшем повышении скорости вращения винта наступает вторая стадия кавитации. Образуется сплошная полость (каверна), которая может замыкаться за пределами лопасти. Эрозия прекращается, но развиваемый винтом упор резко падает.

Момент наступления кавитации зависит не только от числа оборотов, но и от суммарной площади лопастей, толщины и кривизны профиля сечения лопасти, глубины погружения винта под ватерлинией и т. п. Чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньших числах оборотов, т. е. «раньше», наступает кавитация. Отметим, что развитию кавитации способствуют пузыри воздуха и завихрения от находящихся перед винтом кронштейнов, вала, фальшкиля, увеличенный шаг винта и т, п.

Характеристикой площади лопастей винта является его дисковое отношение A/A d , т. е. отношение суммарной площади всех развернутых и спрямленных лопастей A к площади круга A d , описываемого винтом (рис. 6). Для малогабаритных винтов тихоходных судов дисковое отношение обычно составляет 0,35-0,60, для кавитирующих винтов быстроходных катеров 0,80-1,20.

Наибольшее распространение на катерах получили трехлопастные гребные винты, хотя на гоночных судах часто применяют и двухлопастные. Вообще говоря, двухлопастные винты более эффективны. У трехлопастного винта расстояние между кромками соседних лопастей меньше, поэтому в обтекание лопастей вносится большее искажение. Кроме того, крутящий момент у трехлопастного винта несколько больше; соответственно и мощность, потребная для его вращения, выше. Четыре и пять лопастей применяются, главным образом, в тех случаях, когда нужно понизить вибрацию и шум от работы винтов.

В зависимости от направления вращения гребного вала (смотря с кормы) применяют винты правого (по часовой стрелке) и левого вращения.

Конечной оценкой эффективности выбранного гребного винта является его коэффициент полезного действия η p - отношение полезной мощности, затрачиваемой непосредственно на создание упора Р и движение судна со скоростью υ (т. е. Po, 75 л. с.), к мощности двигателя, подводимой к винту.

Потери мощности на гребном винте довольно значительны и достигают 35-50%. Они вызваны затратами на ускорение потока воды за винтом, на закручивание и сужение этого потока, на трение лопастей о воду и др. Получить высокий к. п. д. винта на катерах очень трудно из-за небольшой осадки, ограничивающей диаметр винта, и сложности подбора оптимального числа оборотов.

Винт, расположенный в корме, всегда оказывается в зоне действия попутного потока , увлекаемого корпусом судна, поэтому скорость его встречи с водой меньше, чем скорость судна. У легких глиссирующих судов, на которых винт установлен под плоским днищем, это уменьшение невелико (2-5%), но на тяжелых водоизмещающих катерах, особенно если винт располагается за дейдвудом, оно возрастает до 15- 20%. Очевидно, что попутный поток необходимо учитывать, иначе винт окажется тяжелым.


Винт, засасывая воду как насос, увеличивает скорость обтекания водой кормовой оконечности судна. Вследствие этого здесь образуется зона пониженного давления, которая тормозит движение судна. Для преодоления этой силы засасывания винт должен развить дополнительный упор. Очевидно, чем полнее обводы и больше осадка судна в районе винта, чем больше диаметр винта и меньше скорость хода, тем больше сила засасывания. Например, на глиссирующем катере она составляет не более 4% основного упора, или тяги, необходимой для движения судна, а на спасательной шлюпке достигает 15-30%.

При работе гребного винта за корпусом судна полезная отдача мощности будет уже характеризоваться не к. п. д. винта, а так называемым пропульсивным коэффициентом :


где η k - коэффициент влияния корпуса, учитывающий потери мощности из-за влияния попутного потока и засасывания .

Средние значения пропульсивного коэффициента на современных катерах 0,45-0,55.

Заканчивая это первое знакомство с гребным винтом, советуем: исследуйте гребной винт вашей лодки, замерьте его диаметр и шаг, оцените скорость лодки, скольжение винта, число оборотов вала и загрузку двигателя. Вполне может оказаться, что вы найдете возможность сделать лодку более быстроходной.

О том, как подобрать оптимальный винт, мы расскажем в ближайших выпусках сборника.

Примечания

1. Как будет показано ниже, скорость натекающего потока на винт меньше скорости судна.

2. У лопастей с несимметричным профилем, обычно применяющимся Для винтов, упор становится равным нулю при отрицательных углах атаки, т. е. когда поступь несколько превышает геометрический шаг винта. Поступь, при которой упор винта равен нулю, называется гидродинамическим шагом винта или шагом нулевого упора .

3. В некоторых случаях η k может быть больше единицы.