Как сделать терморегуляторы своими руками? Простой электронный терморегулятор своими руками своими руками Датчик температуры самодельный

18.04.2024

Андрей , возможно, вся проблема в симисторе КУ208Г. 127В получается от того, что симистор пропускает один из полупериодов сетевого напряжения. Попробуйте заменить его на импортный BTA16-600 (16А, 600В), они работают более устойчиво. BTA16-600 купить сейчас не проблема, да и стоит он не дорого.

sta9111 , для ответа на этот вопрос придется вспомнить, как работает наш терморегулятор. Вот, абзац из статьи: «Напряжение на управляющем электроде 1 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается. Когда на выводе 1 напряжение выше 2,5В микросхема открыта, реле включено.»

Другими словами при желаемой температуре, в Вашем случае 220 градусов, на терморезисторе R4 д.б. падение напряжения 2,5В, обозначим его как U_2,5В. Номинал Вашего терморезистора 1КОм, - это при температуре 25 градусов. Именно эта температура указывается в справочниках.

Справочник по терморезисторам msevm.com/data/trez/index.htm

Здесь же можно посмотреть рабочий диапазон температур и ТКС: для температуры 220 градусов мало что подходит.

Характеристика полупроводниковых терморезисторов нелинейна, как показано на рисунке.

Рисунок. Вольт-амперная характеристика терморезистора - сайт/vat.jpg

К сожалению, тип Вашего терморезистора неизвестен, так что будем считать, что у Вас терморезистор ММТ-4.

По графику получается, что при 25 градусах сопротивление терморезистора как раз 1КОм. При температуре 150 градусов сопротивление падает примерно до 300 Ом, точнее по этому графику определить просто нельзя. Обозначим это сопротивление как R4_150.

Таким образом, получается, что ток через терморезистор составит (закон Ома) I= U_2,5В/ R4_150 = 2,5/300 = 0,0083А = 8,3мА. Это при температуре 150 градусов, кажется, пока все понятно, и ошибок в рассуждениях, как будто, нет. Продолжим дальше.

При напряжении питания 12В получается, что сопротивление цепи R1, R2 и R4 составит 12В/8,3мА=1,445КОм или 1445Ом. За вычетом R4_150 получается, что сумма сопротивлений резисторов R1+R2 составит 1445-300=1145Ом, или 1,145КОм. Таким образом, можно применить подстроечный резистор R1 1КОм, и ограничительный резистор R2 470Ом. Вот такой получается расчет.

Все бы это хорошо, только немногие терморезисторы предназначены для работы на температурах до 300 градусов. Более всего для этого диапазона подойдут терморезисторы СТ1-18 и СТ1-19. Смотрите справочник msevm.com/data/trez/index.htm

Таким образом, получается, что данный терморегулятор не обеспечит стабилизацию температуры 220 и выше градусов, поскольку рассчитан на применение полупроводниковых терморезисторов. Вам придется искать схему с металлическими термосопротивлениями ТСМ или ТСП.

Многих автолюбителей по некоторым причинам попросту не устраивает обычный стрелочный индикатор температуры двигателя на приборной панели автомобиля. Вызвано это в основном тем, что такие датчики, в большинстве своем случаев, показывают неточные, а иногда и неверные данные. В сегодняшней статье мы расскажем о возможном решении данной проблемы, а решением у нас будет установка нового датчика с цифровым индикатором температуры.

Причиной того, что стрелочные индикаторы показывают неверные данные, обычно является то, что их рабочий диапазон, который составляет примерно 300-400 Ом, имеет некоторую погрешность в размере до 50 Ом. Из-за этого и выводятся неточные данные. Цифровой индикатор, в свою очередь, не имеет никаких погрешностей в выводе данных и способен более точно определить температуру двигателя и передать ее значение на циферблат. Кроме этого, такие индикаторы оснащаются дополнительным рядом полезных функций, таких как:

Включение вентилятора на радиаторе, когда температура двигателя достигает 910С и его выключение при 880С;
Применение звукового сигнала, что-то в виде тревоги, когда температура достигает 990С и ее выключение при 980С;
Включение дополнительного сигнала при критических 1100С;

В неком смысле, можно сказать, что данный индикатор не только измеряет точную температуру двигателя, но и имеет (хоть и урезанный) функционал бортовых компьютеров.





Данный прибор настроен таким образом, что температура включения датчика вентилятора 2103-07, диапазон которой сужен с обеих сторон на 10С. Нужно это для более точного измерения температуры в блоке двигателя, а не на радиаторе.
Сам датчик температуры помещается в корпус стандартного, старого датчика температуры ТМ106. Перед помещением все обрабатывается термопастой и делается разъем для того, чтобы при дефекте или выходе из эксплуатации датчика температуры, его можно было заменить без деформации самого корпуса.

Если у вас не имеется прошивки датчика, то схема не даст вам никакой полезной информации. Прошивку к вышеуказанной схеме можете найти по этой ссылке . Ну а этот вариант поможет вам подключать несколько термометров разом, а так же использовать один из приборов PIC на выбор.


В нашем случае был автомобиль ВАЗ 2110, который не имел дополнительного отверстия для циферблата датчика, поэтому мы вырезали его самостоятельно. Установив циферблат, может быть такое, что яркость циферблата превышает яркость других приборов на панели, поэтому на циферблат мы наклеили затемняющую поверхность, которая немного снизила его яркость.
Данный небольшой тюнинг вашего автомобиля обеспечит вам более точную слежку за параметрами температуры двигателя автомобиля, а также вовремя оповестит вас о перегреве.

Предлагаемый проверенный и неплохо себя зарекомендовавший термостат работает в диапазоне 0 - 100°С. Он осуществляет электронный контроль температуры, коммутируя нагрузку через реле. Схема собрана с использованием доступных микросхем LM35 (датчик температуры), LM358 и TL431.

Схема электрическая термостата

Детали для устройства

  • IC1: LM35DZ температурный датчик
  • IC2: TL431 прецизионный источник опорного напряжения
  • IC3: двойной однополярный ОУ LM358.
  • LED1: 5 мм светодиод
  • В1: PNP транзистор A1015
  • Д1 - Д4: 1n4148 и 1N400x кремниевые диоды
  • ZD1: стабилитрон на 13 В, 400 мВт
  • Подстроечный резистор 2.2 к
  • Р1 - 10к
  • R2 - 4,7 М
  • Р3 - 1.2 К
  • Р4 - 1к
  • Р5 - 1к
  • Р6 - 33 Ом
  • С1 - 0.1 мкф керамический
  • С2 - 470 мкФ электролитический
  • Реле на 12 В постоянного тока однополюсное двухпозиционное 400 Ω или выше

Устройство выполняет простой, но очень точный тепловой контроль тока, которая может использоваться там, где необходим автоматический контроль температуры. Схема переключает реле в зависимости от температуры, определяемой однокристальным датчиком LM35DZ. Когда LM35DZ обнаруживает температуру выше, чем заданный уровень (установленный регулятором), реле срабатывает. Когда температура падает ниже заданной температуры - реле обесточивается. Таким образом и удерживается нужное значение инкубатора, термостата, системы подогрева дома и так далее. Схема может питаться от любого источника переменного или постоянного тока 12 В, или от автономного аккумулятора. Существует несколько версий датчика температуры LM35:

  • LM35CZ и LM35CAZ (в to-92 корпусе) − 40 - +110C
  • LM35DZ (в to-92 корпус) 0 - 100с.
  • LM35H и LM35AH (в-46 корпус) − 55 - +150C

Принцип работы

Как работает терморегулятор. Основой схемы является температурный датчик, который представляет собой преобразователь градусы - вольты. Выходное напряжение (на выводе 2) линейно изменяется вместе с температурой от 0 В (при нуле) до 1000 мВ (при 100 градусах). Это значительно упрощает расчет цепи, так как нам нужно только обеспечить прецизионный источник опорного напряжения (TL431) и точный компаратор (А1 LM358) с целью построения полной тепловой управляемости коммутатором. Регулятор и резистор задают опорное напряжение (vref) 0 - 1.62 В. Компаратор (А1) сравнивает опорное напряжение vref от (установленного регулятором) с выходным напряжением LM35DZ и решает, следует ли включить или выключить питание реле. Цель резистора R2 создать гистерезис, который помогает предотвратить дребезг реле. Гистерезис обратно пропорционален значению R2.

Настройка

Никаких специальных приборов требуется. Например, чтобы установить 70С срабатывания подключите цифровой вольтметр или мультиметр через тестовые точки "ТР1" и "масса". Отрегулируйте vr1, пока не получите точное значение 0,7 В на вольтметре. Другой вариант схемы, с использованием микроконтроллера, смотрите .

СХЕМЫ ТЕРМОРЕГУЛЯТОРОВ

Существует большое количество электрических принципиальных схем, которые могут поддерживать желаемую заданную температуру с точностью до 0,0000033 °С. Эти схемы включают коррекцию при отклонении от установленного значения температуры, пропорциональное, интегральное и дифференциальное регулирование.
В регуляторе для электроплиток (рис. 1.1) используется позистор (терморезистор с положительным температурным коэффициентом сопротивления или ТКС) типа К600А фирмы Allied Electronics, встроенный в кухонную плиту, чтобы поддерживать идеальную температуру варки. Потенциометром можно регулировать запуск семисторного регулятора и, соответственно, включение или выключение нагревательного элемента. Устройство предназначено для работы в электрической сети с напряжением 115 В. При включении устройства в сеть напряжением 220 В необходимо использовать другой питающий трансформатор и семистор.

Рисунок 1.1 Регулятор температуры электроплиты

Таймер LM122 производства компании National используется как дозирующий терморегулятор с оптической развязкой и синхронизацией при прохождении питающего напряжения через нуль. Установкой резистора R2 (рис. 1.2) задается регулируемая позистором R1 температура. Тиристор Q2 подбирается из расчета подключаемой нагрузки по мощности и напряжению. Диод D3 определен для напряжения 200 В. Резисторы R12, R13 и диод D2 реализуют управление тиристором при прохождении питающего напряжения через нуль.


Рисунок 1.2 Дозирующий регулятор мощности нагревателя

Простая схема (рис. 1.3) с переключателем при переходе питающего напряжения через нуль на микросхеме СА3059 позволяет регулировать включение и выключение тиристора, который управляет катушкой нагревательного элемента или реле для управления электро- или газовой печью. Переключение тиристора происходит при малых токах. Измерительное сопротивление NTC SENSOR обладает отрицательным температурным коэффициентом. Резистором Rp устанавливается желаемая температура.


Рисунок 1.3 Схема терморегулятора с комутацией нагрузки при переходе питания через ноль.

Устройство (рис. 1.4) обеспечивает пропорциональное регулирование температуры небольшой маломощной печи с точностью до 1 °С относительно температуры, заданной с помощью потенциометра. В схеме используется стабилизатор напряжения 823В, который питается, как и печь, от того же источника напряжением 28 В. Для задания величины температуры должен использоваться 10-оборотный проволочный потенциометр. Мощный транзистор Qi работает в режиме насыщения или близко к этому режиму, однако радиатор для охлаждения транзистора не требуется.


Рисунок 1.4 Схема терморегулятора для низковольтного нагревателя

Для управления семистором при переходе питающего напряжения через нуль используется переключатель на микросхеме SN72440 от фирмы Texas Instruments. Эта микросхема переключает симистор TRIAC (рис. 1.5), включающий или выключающий нагревательный элемент, обеспечивая необходимый нагрев. Управляющий импульс в момент перехода напряжения сети через нуль подавляется или пропускается под действием дифференциального усилителя и моста сопротивления в интегральной схеме (ИС). Ширина последовательных выходных импульсов на выводе 10 ИС регулируется потенциометром в цепи запуска R(trigger)? как это показано в таблице на рис. 1.5, и должна изменяться в зависимости от параметров используемого симистора.


Рисунок 1.5 Терморегулятор на микросхеме SN72440

Обычный кремниевый диод с температурным коэффициентом 2 мВ/°С служит для поддержания разницы температур до ±10 °F] с точностью примерно 0,3 °F в широком диапазоне температур. Два диода, включенные в мост сопротивлений (рис. 1.6)^ дают напряжение на выводах А и В, которое пропорционально разнице температуры. Потенциометром регулируется ток смещения, который соответствует предварительно устанавливаемой области смещения температуры. Низкое выходное напряжение моста усиливается операционным усилителем MCI741 производства фирмы Motorola до 30 В при изменении напряжения на входе на 0,3 мВ. Буферный транзистор добавлен для подключения нагрузки с помощью реле.


Рисунок 1.6 Регулятор температуры с датчиком на диоде

Температура по шкале Фаренгейта. Для перевода температуры из шкалы Фаренгейта в шкалу Цельсия нужно от исходного числа отнять 32 и умножить результат на 5/9/

Позистор RV1 (рис. 1.7) и комбинация из переменного и постоянного резисторов образуют делитель напряжения, поступающего с 10-вольтового диода Зенера (стабилитрона). Напряжение с делителя подается на однопереходный транзистор. Во время положительной полуволны напряжения сети на конденсаторе возникает напряжение пилообразной формы, амплитуда которого зависит от температуры и установки сопротивления на потенциометре номиналом 5 кОм. Когда амплитуда этого напряжения достигает отпирающего напряжения однопереходного транзистора, он включает тиристор, который и подает напряжение на нагрузку. Во время отрицательной полуволны переменного напряжения тиристор выключается. Если температура печи низка, то тиристор открывается в полуволне раньше и производит больший нагрев. Если предварительно установленная температура достигнута, то тиристор открывается позже и производит меньший нагрев. Схема разработана для использования в устройствах с температурой окружающей среды 100 °F.


Рисунок 1.7 Терморегулятор для хлебопечки

Простой регулятор (рис. 1.8), содержащий измерительный мост с термистором и два операционных усилителя, регулирует температуру с очень высокой точностью (до 0,001 °С) и большим динамическим диапазоном, что необходимо при быстрых изменениях условий окружающей среды.


Рисунок 1.8 Схема терморегулятора повышенной точности

Устройство (рис. 1.9) состоит из симистора и микросхемы, которая включает в себя источник питания постоянного тока, детектор перехода питающего напряжения через нуль, дифференциальный усилитель, генератор пилообразного напряжения и выходной усилитель. Устройство обеспечивает синхронное включение и выключение омической нагрузки. Управляющий сигнал получается при сравнении напряжения, получаемого от чувствительного к температуре измерительного моста из резисторов R4 и R5 и резистора с отрицательным температурным коэффициентом R6, а также резисторов R9 и R10 в другой цепи. Все необходимые функции реализованы в микросхеме ТСА280А фирмы Milliard. Показанные значения действительны для симистора с током управляющего электрода 100 мА, для другого симистора значения номиналов резисторов Rd, Rg и конденсатора С1 должны изменяться. Пределы пропорционального регулирования могут устанавливаться с помощью изменения значения резистора R12. При проходе через нуль напряжения сети симистор будет переключаться. Период колебаний пилообразной формы составляет примерно 30 сек и может устанавливаться изменением емкости конденсатора С2.

Представленная простая схема (рис. 1.10) регистрирует разницу температур двух объектов, нуждающихся в использовании регулятора. Например, для включения вентиляторов, выключения нагревателя или для управления клапанами смесителей воды. Два недорогих кремниевых диода 1N4001, установленные в мост сопротивлений, используются как датчики. Температура пропорциональна напряжению между измерительным и опорным диодом, которое подается на выводы 2 и 3 операционного усилителя МС1791. Так как при разнице температур с выхода моста поступает только примерно 2 мВ/°С, то необходим операционный усилитель с высоким усилением. Если для нагрузки требуется более 10 мА, то необходим буферный транзистор.

Рисунок 1.10 Схема терморегулятора с измерительным диодом

При падении температуры ниже установленного значения разность напряжений, на измерительном мосте с терморезистором, регистрируется дифференциальным операционным усилителем, который открывает буферный усилитель на транзисторе Q1 (рис. 1.11) и усилитель мощности на транзисторе Q2. Рассеиваемая мощность транзистора Q2 и его нагрузки резистора R11 обогревают термостат. Терморезистор R4 (1D53 или 1D053 от фирмы National Lead) имеет номинальное сопротивление 3600 Ом при 50 °С. Делитель напряжения Rl-R2 уменьшает входной уровень напряжения до необходимого значения и способствует тому, что терморезистор работает при малых токах, обеспечивающих малый разогрев. Все цепи моста, за исключением резистора R7, предназначенного для точной регулировки температуры, находятся в конструкции термостата.


Рисунок 1.11 Схема терморегулятора с измерительным мостом

Схема (рис. 1.12) осуществляет линейное регулирование температуры с точностью до 0,001 °С, с высокой мощностью и высокой эффективностью. Источник опорного напряжения на микросхеме AD580 питает мостовую схему преобразователя температуры, в которой платиновый измерительный резистор (PLATINUM SENSOR) работает в качестве датчика. Операционный усилитель AD504 усиливает выходной сигнал моста и управляет транзистором 2N2907, который, в свою очередь, управляет синхронизируемым с частотой 60 Гц генератором на однопереходном транзисторе. Этот генератор питает управляющий электрод тиристора через развязывающий трансформатор. Предварительная установка способствует тому, что тиристор включается в различных точках переменного напряжения, что необходимо для точной регулировки нагревателя. Возможный недостаток - возникновение помех высокой частоты, т. к. тиристор переключается посреди синусоиды.


Рисунок 1.12 Тиристорный терморегулятор

Узел управления мощного транзисторного ключа (рис. 1.13) для нагрева инструментов мощностью 150 Вт использует отвод на нагревательном элементе, чтобы принудить переключатель на транзисторе Q3 и усилитель на транзисторе Q2 достичь насыщения и установить малую рассеиваемую мощность. Когда на вход транзистора Qi поступает положительное напряжение, транзистор Qi открывается и приводит транзисторы Q2 и Q3 в открытое состояние. Ток коллектора транзистора Q2 и базовый ток транзистора Q3 определяются резистором R2. Падение напряжения на резисторе R2 пропорционально напряжению питания, так что управляющий ток обладает оптимальным уровнем для транзистора Q3 при большом диапазоне напряжения.


Рисунок 1.13 Ключ для низковольтного терморегулятора

Операционный усилитель СА3080А производства фирмы RCA (рис. 1.14) включает вместе термопару с переключателем, срабатывающем при проходе питающего напряжения через нуль и выполненным на микросхеме СА3079, который служит как триггер для симистора с нагрузкой переменного напряжения. Симистор нужно подбирать Под регулируемую нагрузку. Напряжение питания для операционного усилителя некритично.


Рисунок 1.14 Терморегулятор на термопаре

При использовании фазового управления симистором ток нагрева сокращается постепенно, если происходит приближение к установленной температуре, что предотвращает большое отклонение от установленного значения. Сопротивление резистора R2 (рис. 1.15) регулируется так, чтобы транзистор Q1 при желаемой температуре был закрыт, тогда генератор коротких импульсов на транзисторе Q2 не функционирует и таким образом симистор больше не открывается. Если температура понижается, то сопротивление датчика RT увеличивается и транзистор Q1 открывается. Конденсатор С1 начинает заряжаться до напряжения открывания транзистора Q2, который лавинообразно открывается, формируя мощный короткий импульс, выполняющий включение симистора. Чем больше открывается транзистор Q1, тем быстрее заряжается емкость С1 и симистор в каждой полуволне переключается раньше и, вместе с тем, в нагрузке возникает большая мощность. Пунктирной линией представлена альтернативная схема для регулирования двигателя с постоянной нагрузкой, например с вентилятором. Для работы схемы в режиме охлаждения резисторы R2 и RT нужно поменять местами.


Рисунок 1.15 Терморегулятор для отопления

Пропорциональный терморегулятор (рис. 1.16) использующий микросхему LM3911 от фирмы National, устанавливает постоянную температуру кварцевого термостата на уровне 75 °С с точностью ±0,1 °С и улучшает стабильность кварцевого генератора, который часто используется в синтезаторах и цифровых счетчиках. Отношение импульс/пауза прямоугольного импульса на выходе (отношение времени включения/выключения) изменяется в зависимости от температурного датчика в ИС и напряжения на инверсном входе микросхемы. Изменения продолжительности включения микросхемы изменяют усредненный ток включения нагревательного элемента термостата таким образом, что температура приводится к заданной величине. Частота прямоугольного импульса на выходе ИС определяется резистором R4 и конденсатором С1. Оптрон 4N30 открывает мощный составной транзистор, у которого в цепи коллектора имеется нагревательный элемент. Во время подачи положительного прямоугольного импульса на базу транзисторного ключа последний переходит в режим насыщения и подключает нагрузку, а при окончании импульса отключает ее.


Рисунок 1.16 Пропорциональный терморегулятор

Регулятор (рис. 1.17) поддерживает температуру печи или ванны с высокой стабильностью на уровне 37,5 °С. Рассогласование измерительного моста регистрируется измерительным операционным усилителем AD605 с высоким коэффициентом подавления синфазной составляющей, низким дрейфом и симметричными входами. Составной транзистор с объединенными коллекторами (пара Дарлингтона) осуществляет усиление тока нагревательного элемента. Транзисторный ключ (PASS TRANSISTOR) должен принимать всю мощность, которая не подводится к нагревательному элементу. Чтобы справляться с этим, большая схема следящей системы подключается между точками "А” и "В", чтобы установить постоянно 3 В на транзисторе без учета напряжения, требуемого для нагревательного элемента. Выходной сигнал операционного усилителя 741 сравнивается в микросхеме AD301A с напряжением пилообразной формы, синхронным с напряжением сети частотой 400 Гц. Микросхема AD301A работает как широтно-импульсный модулятор, включающий транзисторный ключ 2N2219-2N6246. Ключ предоставляет управляемую мощность конденсатору емкостью 1000 мкФ и транзисторному ключу (PASS TRANSISTOR) терморегулятора.


Рисунок 1.17 Высоточный терморегулятор

Принципиальная схема терморегулятора, срабатывающего при проходе напряжения сети через нуль (ZERO-POINT SWITCH) (рис. 1.18), устраняет электромагнитные помехи, которые возникают при фазовом управлении нагрузкой. Для точного регулирования температуры электронагревательного прибора используется пропорциональное включение/выключение семистора. Схема, справа от штриховой линии, представляет собой переключатель, срабатывающий при проходе через нуль питающего напряжения, который включает симистор почти непосредственно после прохода через нуль каждой полуволны напряжения сети. Сопротивление резистора R7 устанавливается таким, чтобы измерительный мост в регуляторе был уравновешен для желаемой температуры. Если температура превышена, то сопротивление позистора RT уменьшается и открывается транзистор Q2, который включает управляющий электрод тиристора Q3. Тиристор Q3 включается и замыкает накоротко сигнал управляющего электрода" симистора Q4 и нагрузка отключается. Если температура понижается, то транзистор Q2 закрывается, тиристор Q3 отключается, а к нагрузке поступает полная мощность. Пропорционального управления достигают подачей пилообразного напряжения, формируемого транзистором Q1, через резистор R3 на цепь измерительного моста, причем период пилообразного сигнала - это сразу 12 циклов частоты сети. От 1 до 12 этих циклов могут вставляться в нагрузку и, таким образом, мощность может модулироваться от 0-100% с шагом 8 %.


Рисунок 1.18 Терморегулятор на симисторе

Схема устройства (рис. 1.19) позволяет оператору устанавливать верхние и нижние границы температуры для регулятора, что бывает необходимо при продолжительных тепловых испытаниях свойств материала. Конструкция переключателя дает возможность для выбора способов управления: от ручного до полностью автоматизированных циклов. С помощью контактов реле К3 управляют двигателем. Когда реле включено, двигатель вращается в прямом направлении с целью повышения температуры. Для понижения температуры направление вращения двигателя меняется на противоположное. Условие переключения реле К3 зависит от того, какое из ограничительных реле было включено последним, К\ или К2. Схема управления проверяет выход программатора температуры. Этот входной сигнал постоянного тока будет уменьшен резисторами и R2 максимально на 5 В и усилен повторителем напряжения А3. Сигнал сравнивается в компараторах напряжения Aj и А2 с непрерывно изменяющимся эталонным напряжением от 0 до 5 В. Пороги компараторов предварительно устанавливаются 10-оборотными потенциометрами R3 и R4. Транзистор Qi закрыт, если сигнал на входе ниже опорного сигнала. Если входной сигнал превосходит опорный сигнал, то транзистор Qi отрывается и возбуждает катушку реле К, верхнего предельного значения.


Рисунок 1.19

Пара преобразователей температуры LX5700 от фирмы National (рис. 1.20) выдает выходное напряжение, которое пропорционально разнице температуры между обоими преобразователями и используется для измерения градиента температуры в таких процессах, как, например, распознавание отказа вентилятора охлаждения, распознавание движения охлаждающего масла, а также для наблюдения за другими явлениями в охлаждающих системах. С измерительным преобразователем, находящимся в горячей среде (вне охлаждающей жидкости или в покоящемся воздухе более 2 мин), 50-омный потенциометр должен устанавливаться таким образом, чтобы выход выключался. Тогда как с преобразователем в прохладной среде (в жидкости или в подвижном воздухе продолжительностью 30 сек) должно находиться положение, при котором выход включается. Эти установки перекрываются между собой, но окончательная установка между тем дает в итоге достаточно стабильный режим.


Рисунок 1.20 Схема детектора температур

В схеме (рис. 1.21) используется высокоскоростной изолированный усилитель AD261K для высокоточного регулирования температуры лабораторной печи. Многодиапазонный мост содержит датчики с сопротивлением от 10 Ом до 1 мОм с делителями Кельвина-Варлея (Kelvin-Varley), которые используются для предварительного выбора точки управления. Выбор точки правления осуществляется с помощью переключателя на 4 положения. Для питания моста допускается применение неинвертирующего стабилизируемого усилителя AD741J, не допускающего синфазной погрешности напряжения. Пассивный фильтр на 60 Гц подавляет помехи на входе усилителя AD261K, который питает транзистор 2N2222A. Далее питание поступает на пару Дарлингтона и подводится 30 В к нагревательному элементу.

Измерительный мост (рис. 1.22) образуется позистором (резистором с положительным температурным коэффициентом) и резисторами Rx R4, R5, Re. Сигнал, снимаемый с моста, усиливается микросхемой СА3046, которая в одном корпусе содержит 2 спаренных транзистора и один отдельный выходной транзистор. Положительная обратная связь через резистор R7 предотвращает пульсации, если достигнута точка переключения. Резистором R5 устанавливается точная температура переключения. Если температура опускается ниже установленного значения, то реле RLA включается. Для противоположной функции должны меняться местами только позистор и Rj. Значение резистора Rj выбирается так, чтобы приблизительно достичь желаемой точки регулировки.


Рисунок 1.22 Регулятор температуры с позистором

Схема регулятора (рис. 1.23) добавляет множество стадий опережающего сигнала к нормально усиленному выходу температурного датчика LX5700 от фирмы National, чтобы, по меньшей мере, частично компенсировать измерительные задержки. Коэффициент усиления по постоянному напряжению операционного усилителя LM216 будет установлен на значение, равное 10, с помощью резисторов с сопротивлением 10 и 100 мОм, что дает в итоге 1 В/°С на выходе операционного усилителя. Выход операционного усилителя активирует оптрон, который управляет обычным терморегулятором.


Рисунок 1.23 Терморегулятор с оптроном

Схема (рис. 1.24) используется для регулирования температуры в установке промышленного отопления, работающей на газе и обладающей высокой тепловой мощностью. Когда операционный усилитель-компаратор AD3H переключается при требуемой температуре, то запускается одновйбратор 555, выходной сигнал которого открывает транзисторный ключ, а следовательно, включает газовый вентиль и зажигает горелку отопительной системы. По истечении одиночного импульса горелка выключается, несмотря на состояние выхода операционного усилителя. Постоянная времени таймера 555 компенсирует задержки в системе, при которой нагрев выключается, прежде чем датчик AD590 достигает точки переключения. Позистор, включенный во времязадающую цепь одновибратора"555, компенсирует изменения постоянной времени таймера из-за изменений температуры окружающей среды. При включении питания во время процесса запуска системы сигнал, формируемый операционным усилителем AD741, минует таймер и включает нагрев отопительной системы, при этом схема имеет одно устойчивое состояние.


Рисунок 1.24 Коррекция перегрузки

Все компоненты терморегулятора находятся на корпусе кварцевого резонатора (рис. 1.25), таким образом, максимальная рассеиваемая мощность резисторов 2 Вт служит для того, чтобы поддерживать температуру в кварце. Позистор имеет при комнатной температуре сопротивление около 1 кОм. Типы транзистора некритичны, но должны иметь низкие токи утечки. Ток позистора примерно от 1 мА должен быть гораздо больше, чем ток базы 0,1 мА транзистора Q1. Если в качестве Q2 выбрать кремниевый транзистор, то нужно повысить 150-омное сопротивление до 680 Ом.


Рисунок 1.25

В мостовой схеме регулятора (рис. 1.26) используется платиновый датчик. Сигнал с моста снимается операционным усилителем AD301, который включен как дифференциальный усилитель-компаратор. В холодном состоянии сопротивление датчика менее 500 Ом, при этом выход операционного усилителя приходит в насыщение и дает положительный сигнал на выходе, который открывает мощный транзистор и нагревательный элемент начинает греться. По мере нагревания элемента растет и сопротивление датчика, которое возвращает мост в состояние уравновешивания, и нагрев выключается. Точность достигает 0,01 °С.


Рисунок 1.26 Регулятор температуры на компараторе

Схема терморегулятора на основе термистора довольно часто встречается в интернете. Схема позволяет осуществить терморегулировку вентилятора.

В качестве силового элемента использован мощный N-канальный силовой транзистор. Полевой ключ можно любой — с током не менее 10-15 Ампер (желательно больше 40 Ампер) и с напряжением 20-60 Вольт. При маломощных нагрузках полевому транзистору теплоотвод не нужен, а если вздумали подключить нагрузки 30 и более ватт, то теплоотвод необходим.

Термистор играет роль термодатчика, чувствительность устройства настраивается с помощью переменного резистора. Переменной резистор в целях более точной настройки устройства желательно брать многооборотный, сопротивление этого резистора 10кОм.



Благодаря простоте конструкции и минимальному количеству деталей, собрать такой терморегулятор своими руками может даже начинающий радиолюбитель.

Работает схема терморегулятора довольно просто. Термистор, при комнатной температуре имеет сопротивление порядка 200-300 Ом (у разных термисторов, оно разное), работает в качестве затворного ограничителя, при нагревании сопротивление резко возрастает и прекращается подача питания на управляющий вывод ключа — на затвор, таким образом, переход транзистора закрывается, следовательно, прекращается подача питания на нагрузку.

Если использовать термисторы с положительной температурной зависимостью, то устройство будет выключать нагрузку при перегреве термистора, поскольку сопротивление указанных термисторов резко возрастает при перегреве. При использовании термисторов с отрицательной температурной зависимостью, происходит обратный процесс — нагрузка включается при перегреве термистора.

Область применения такого простого терморегулятора безгранична — от датчика температуры до теплового активатора того или иного прибора (устройства, которые реагируют на тепло человеческого тела).

На основе такого простого датчика можно управлять и сетевыми нагрузками, достаточно вместо кулера подключить обмотку электромагнитного реле (в этом случае транзистору теплоотвод не нужен).

На видео демонстрируется, как работает самодельный терморегулятор. В моем случае был использован термистор с положительной зависимостью температуры.